Back to Search Start Over

Trans-ancestry, Bayesian meta-analysis discovers 20 novel risk loci for inflammatory bowel disease in an African American, East Asian and European cohort.

Authors :
Cordero RY
Cordero JB
Stiemke AB
Datta LW
Buyske S
Kugathasan S
McGovern DPB
Brant SR
Simpson CL
Source :
Human molecular genetics [Hum Mol Genet] 2023 Feb 19; Vol. 32 (5), pp. 873-882.
Publication Year :
2023

Abstract

Inflammatory bowel disease (IBD) is an immune-mediated chronic intestinal disorder with major phenotypes: ulcerative colitis (UC) and Crohn's disease (CD). Multiple studies have identified over 240 IBD susceptibility loci. However, most studies have centered on European (EUR) and East Asian (EAS) populations. The prevalence of IBD in non-EUR, including African Americans (AAs), has risen in recent years. Here we present the first attempt to identify loci in AAs using a trans-ancestry Bayesian approach (MANTRA) accounting for heterogeneity between diverse ancestries while allowing for the similarity between closely related populations. We meta-analyzed genome-wide association studies (GWAS) and Immunochip data from a 2015 EUR meta-analysis of 38 155 IBD cases and 48 485 controls and EAS Immunochip study of 2824 IBD cases and 3719 controls, and our recent AA IBD GWAS of 2345 cases and 5002 controls. Across the major IBD phenotypes, we found significant evidence for 92% of 205 loci lead SNPs from the 2015 meta-analysis, but also for three IBD loci only established in latter studies. We detected 20 novel loci, all containing immunity-related genes or genes with other evidence for IBD or immune-mediated disease relevance: PLEKHG5;TNFSFR25 (encoding death receptor 3, receptor for TNFSF15 gene product TL1A), XKR6, ELMO1, BC021024;PI4KB;PSMD4 and APLP1 for IBD; AUTS2, XKR6, OSER1, TET2;AK094561, BCAP29 and APLP1 for CD; and GABBR1;MOG, DQ570892, SPDEF;ILRUN, SMARCE1;CCR7;KRT222;KRT24;KRT25, ANKS1A;TCP11, IL7, LRRC18;WDFY4, XKR6 and TNFSF4 for UC. Our study highlights the value of combining low-powered genomic studies from understudied populations of diverse ancestral backgrounds together with a high-powered study to enable novel locus discovery, including potentially important therapeutic IBD gene targets.<br /> (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1460-2083
Volume :
32
Issue :
5
Database :
MEDLINE
Journal :
Human molecular genetics
Publication Type :
Academic Journal
Accession number :
36308435
Full Text :
https://doi.org/10.1093/hmg/ddac269