Back to Search Start Over

Electrolyte for High-Energy- and Power-Density Zinc Batteries and Ion Capacitors.

Authors :
Chen P
Sun X
Pietsch T
Plietker B
Brunner E
Ruck M
Source :
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Feb; Vol. 35 (7), pp. e2207131. Date of Electronic Publication: 2022 Dec 25.
Publication Year :
2023

Abstract

Growth of dendrites, limited coulombic efficiency (CE), and the lack of high-voltage electrolytes restrict the commercialization of zinc batteries and capacitors. These issues are resolved by a new electrolyte, based on the zinc(II)-betaine complex [Zn(bet) <subscript>2</subscript> ][NTf <subscript>2</subscript> ] <subscript>2</subscript> . Solutions in acetonitrile (AN) avoid dendrite formation. A Zn||Zn cell operates stably over 10 110 h (5055 cycles) at 0.2 mA cm <superscript>-2</superscript> or 110 h at 50 mA cm <superscript>-2</superscript> , and has an area capacity of 113 mAh cm <superscript>-2</superscript> at 80% depth of discharge. A zinc-graphite battery performs at 2.6 V with a midpoint discharge-voltage of 2.4 V. The capacity-retention at 3 A g <superscript>-1</superscript> (150 C) is 97% after 1000 cycles and 68% after 10 000 cycles. The charge/discharge time is about 24 s at 3.0 A g <superscript>-1</superscript> with an energy density of 49 Wh kg <superscript>-1</superscript> at a power density of 6864 W kg <superscript>-1</superscript> based on the cathode. A zinc||activated-carbon ion-capacitor (coin cell) exhibits an operating-voltage window of 2.5 V, an energy density of 96 Wh kg <superscript>-1</superscript> with a power density of 610 W kg <superscript>-1</superscript> at 0.5 A g <superscript>-1</superscript> . At 12 A g <superscript>-1</superscript> , 36 Wh kg <superscript>-1</superscript> , and 13 600 W kg <superscript>-1</superscript> are achieved with 90% capacity-retention and an average CE of 96% over 10 000 cycles. Quantum-chemical methods and vibrational spectroscopy reveal [Zn(bet) <subscript>2</subscript> (AN) <subscript>2</subscript> ] <superscript>2+</superscript> as the dominant complex in the electrolyte.<br /> (© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1521-4095
Volume :
35
Issue :
7
Database :
MEDLINE
Journal :
Advanced materials (Deerfield Beach, Fla.)
Publication Type :
Academic Journal
Accession number :
36305595
Full Text :
https://doi.org/10.1002/adma.202207131