Back to Search
Start Over
Direct actions of dapagliflozin and interactions with LCZ696 and spironolactone on cardiac fibroblasts of patients with heart failure and reduced ejection fraction.
- Source :
-
ESC heart failure [ESC Heart Fail] 2023 Feb; Vol. 10 (1), pp. 453-464. Date of Electronic Publication: 2022 Oct 27. - Publication Year :
- 2023
-
Abstract
- Aims: Inhibitors of SGLT2 (SGLT2i) have shown a positive impact in patients with chronic heart failure and reduced ejection fraction (HFrEF). Nonetheless, the direct effects of SGLT2i on cardiac cells and how their association with main drugs used for HFrEF affect the behaviour and signalling pathways of myocardial fibroblasts are still unknown. We aimed to determine the effects of dapagliflozin alone and in combination with sacubitril/valsartan (LCZ696) or spironolactone on the function of myocardial fibroblasts of patients with heart failure and reduced ejection fraction (HFrEF).<br />Methods and Results: Myocardial fibroblasts isolated from HFrEF patients (n = 5) were treated with dapagliflozin alone (1 nM-1 μM) or combined with LCZ696 (100 nM) or spironolactone (100 nM). The migratory rate was determined by wound-healing scratch assay. Expression of heart failure (HF) markers and signalling pathways activation were analysed with multiplexed protein array. Commercially available cardiac fibroblasts from healthy donors were used as Control (n = 4). Fibroblasts from HFrEF show higher migratory rate compared with control (P = 0.0036), and increased expression of HF markers [fold-change (Log2): COL1A1-1.3; IL-1b-1.9; IL-6-1.7; FN1-2.9 (P < 0.05)]. Dapagliflozin slowed the migration rate of HFrEF fibroblasts in a dose-dependent manner and markedly decreased the expression of IL-1β, IL-6, MMP3, MMP9, GAL3, and FN1. SGLT2i had no effect on control fibroblasts. These effects were associated with decreased phosphorylation of AKT/GSK3 and PYK2 kinases and the signal transducer and activator of transcription (STAT). A combination of dapagliflozin + LCZ696 further decreased fibroblast migration, although it did not have a significant effect on the regulation of signalling pathways and the expression of biomarkers induced by SGLT2 inhibition alone. In contrast, the combination of dapagliflozin + spironolactone did not change the migration rate of fibroblast but significantly altered SGLT2i responses on MMP9, GAL3, and IL-1b expression, in association with increased phosphorylation of the kinases AKT/GSK3 and ERK1/2.<br />Conclusions: SGLT2i, LCZ696, and spironolactone modulate the function of isolated myocardial fibroblasts from HFrEF patients through the activation of different signalling pathways. The combination of SGLT2i + LCZ696 shows an additive effect on migration, while spironolactone modifies the signalling pathways activated by SGLT2i and its beneficial effects of biomarkers of heart failure.<br /> (© 2022 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.)
- Subjects :
- Humans
Spironolactone pharmacology
Matrix Metalloproteinase 9 pharmacology
Matrix Metalloproteinase 9 therapeutic use
Sodium-Glucose Transporter 2 pharmacology
Sodium-Glucose Transporter 2 therapeutic use
Stroke Volume
Glycogen Synthase Kinase 3 pharmacology
Glycogen Synthase Kinase 3 therapeutic use
Interleukin-6
Proto-Oncogene Proteins c-akt pharmacology
Proto-Oncogene Proteins c-akt therapeutic use
Valsartan therapeutic use
Fibroblasts
Biomarkers
Heart Failure
Subjects
Details
- Language :
- English
- ISSN :
- 2055-5822
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- ESC heart failure
- Publication Type :
- Academic Journal
- Accession number :
- 36303443
- Full Text :
- https://doi.org/10.1002/ehf2.14186