Back to Search
Start Over
A macroporous resin purification process to obtain food-grade phlorotannin-rich extracts with α-glucosidase inhibitory activity from Chilean brown seaweeds: An UHPLC-MS n profiling.
- Source :
-
Food chemistry [Food Chem] 2023 Feb 15; Vol. 402, pp. 134472. Date of Electronic Publication: 2022 Sep 30. - Publication Year :
- 2023
-
Abstract
- An efficient macroporous resin purification process was designed to obtain food-grade phlorotannin-rich extracts from the seaweeds Durvillaea incurvata and Lessonia spicata. Phlorotannins were profiled to relate structures with the α-glucosidase inhibitory activity of the extracts. Liquid chromatography-mass spectrometry was applied for tentative identification. The best phlorotannin purification performance was achieved with HP-20 resin and elution with 80% v/v ethanol. This is the first study that demonstrates the effectivity of HP-20 resin for removing potentially toxic elements (As, Cd) from seaweed extracts. Fucols/phlorethols/fucophlorethols isomers up to 4 phloroglucinol units (PGU) were the most representative phlorotannins. High molecular weight species (11-21 PGU), although in low abundances, were detected in D. incurvata for the first time. Eckols, carmalols, fuhalols, phenolic acids, and flavonoids were also detected. Some extracts' potent α-glucosidase inhibitory activities were related to their high phlorotannin abundances, the presence of phlorotannins of a high degree of polymerization, and the phlorotannins class.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-7072
- Volume :
- 402
- Database :
- MEDLINE
- Journal :
- Food chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 36303384
- Full Text :
- https://doi.org/10.1016/j.foodchem.2022.134472