Back to Search Start Over

A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.

Authors :
Li Z
Li X
Zhou H
Gaynor SM
Selvaraj MS
Arapoglou T
Quick C
Liu Y
Chen H
Sun R
Dey R
Arnett DK
Auer PL
Bielak LF
Bis JC
Blackwell TW
Blangero J
Boerwinkle E
Bowden DW
Brody JA
Cade BE
Conomos MP
Correa A
Cupples LA
Curran JE
de Vries PS
Duggirala R
Franceschini N
Freedman BI
Göring HHH
Guo X
Kalyani RR
Kooperberg C
Kral BG
Lange LA
Lin BM
Manichaikul A
Manning AK
Martin LW
Mathias RA
Meigs JB
Mitchell BD
Montasser ME
Morrison AC
Naseri T
O'Connell JR
Palmer ND
Peyser PA
Psaty BM
Raffield LM
Redline S
Reiner AP
Reupena MS
Rice KM
Rich SS
Smith JA
Taylor KD
Taub MA
Vasan RS
Weeks DE
Wilson JG
Yanek LR
Zhao W
Rotter JI
Willer CJ
Natarajan P
Peloso GM
Lin X
Source :
Nature methods [Nat Methods] 2022 Dec; Vol. 19 (12), pp. 1599-1611. Date of Electronic Publication: 2022 Oct 27.
Publication Year :
2022

Abstract

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.<br /> (© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)

Details

Language :
English
ISSN :
1548-7105
Volume :
19
Issue :
12
Database :
MEDLINE
Journal :
Nature methods
Publication Type :
Academic Journal
Accession number :
36303018
Full Text :
https://doi.org/10.1038/s41592-022-01640-x