Back to Search Start Over

Diagnosing Hemophagocytic Lymphohistiocytosis with Machine Learning: A Proof of Concept.

Authors :
El Jammal T
Guerber A
Prodel M
Fauter M
Sève P
Jamilloux Y
Source :
Journal of clinical medicine [J Clin Med] 2022 Oct 21; Vol. 11 (20). Date of Electronic Publication: 2022 Oct 21.
Publication Year :
2022

Abstract

Hemophagocytic lymphohistiocytosis is a hyperinflammatory syndrome characterized by uncontrolled activation of immune cells and mediators. Two diagnostic tools are widely used in clinical practice: the HLH-2004 criteria and the Hscore. Despite their good diagnostic performance, these scores were constructed after a selection of variables based on expert consensus. We propose here a machine learning approach to build a classification model for HLH in a cohort of patients selected by glycosylated ferritin dosage in our tertiary center in Lyon, France. On a dataset of 207 adult patients with 26 variables, our model showed good overall diagnostic performances with a sensitivity of 71.4% and high specificity, and positive and negative predictive values which were 100%, 100%, and 96.9%, respectively. Although generalization is difficult on a selected population, this is the first study to date to provide a machine-learning model for HLH detection. Further studies will be required to improve the machine learning model performances with a large number of HLH cases and with appropriate controls.

Details

Language :
English
ISSN :
2077-0383
Volume :
11
Issue :
20
Database :
MEDLINE
Journal :
Journal of clinical medicine
Publication Type :
Academic Journal
Accession number :
36294539
Full Text :
https://doi.org/10.3390/jcm11206219