Back to Search
Start Over
Engineering of QbD driven and ultrasonically shaped lyotropic liquid crystalline nanoparticles for Apigenin in the management of skin cancer.
- Source :
-
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V [Eur J Pharm Biopharm] 2022 Nov; Vol. 180, pp. 269-280. Date of Electronic Publication: 2022 Oct 20. - Publication Year :
- 2022
-
Abstract
- Treatment of skin cancer demands targeted delivery without minimal systemic circulation for maximum therapeutic window. Dermal delivery with nano-formulation offers such advantages. Therefore, present study aims to formulate Lyotropic liquid crystalline nanoparticles (LLC NPs) loaded with Apigenin (API) for dermal delivery using quality by design (QbD) approach for effective permeation resulting in improved bioavailability. Apigenin loaded LLC NPs (API-LLC NPs) were formulated and optimized by applying risk assessment and design of experiments (Box-Behnken Design). The optimized API-LLC NPs showed particle size, PdI and entrapment efficiency of 287.7 ± 9.53 nm, 0.152 ± 0.051 and 80 ± 2.2 % respectively. The optimized API-LLC NPs were characterized for morphology and crystallinity using optical microscopy, TEM, DSC and PXRD. In vitro and ex vivo studies showed sustained release and better permeation profile. CLSM study presented better penetration of API-LLC NPs which were quantitatively confirmed with dermatokinetics. Cytotoxic efficacy assessed on B16F10 cell lines showed a dose-dependent efficacy of API-LLC NPs with an IC <subscript>50</subscript> of 45.74 ± 0.05. In a nutshell, the developed API-LLC NPs exhibit excellent potential for targeting deeper skin layers thereby can be considered a promising topical drug delivery nanocarrier in the treatment and management of skin cancer.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3441
- Volume :
- 180
- Database :
- MEDLINE
- Journal :
- European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
- Publication Type :
- Academic Journal
- Accession number :
- 36272654
- Full Text :
- https://doi.org/10.1016/j.ejpb.2022.10.015