Back to Search Start Over

How Electron Hydrodynamics Can Eliminate the Landauer-Sharvin Resistance.

Authors :
Stern A
Scaffidi T
Reuven O
Kumar C
Birkbeck J
Ilani S
Source :
Physical review letters [Phys Rev Lett] 2022 Oct 07; Vol. 129 (15), pp. 157701.
Publication Year :
2022

Abstract

It has long been realized that even a perfectly clean electronic system harbors a Landauer-Sharvin resistance, inversely proportional to the number of its conduction channels. This resistance is usually associated with voltage drops on the system's contacts to an external circuit. Recent theories have shown that hydrodynamic effects can reduce this resistance, raising the question of the lower bound of resistance of hydrodynamic electrons. Here, we show that by a proper choice of device geometry, it is possible to spread the Landauer-Sharvin resistance throughout the bulk of the system, allowing its complete elimination by electron hydrodynamics. We trace the effect to the dynamics of electrons flowing in channels that terminate within the sample. For ballistic systems this termination leads to back-reflection of the electrons and creates resistance. Hydrodynamically, the scattering of these electrons off other electrons allows them to transfer to transmitted channels and avoid the resistance. Counterintuitively, we find that in contrast to the ohmic regime, for hydrodynamic electrons the resistance of a device with a given width can decrease with its length, suggesting that a long enough device may have an arbitrarily small total resistance.

Subjects

Subjects :
Electrons
Hydrodynamics

Details

Language :
English
ISSN :
1079-7114
Volume :
129
Issue :
15
Database :
MEDLINE
Journal :
Physical review letters
Publication Type :
Academic Journal
Accession number :
36269972
Full Text :
https://doi.org/10.1103/PhysRevLett.129.157701