Back to Search Start Over

Augmin prevents merotelic attachments by promoting proper arrangement of bridging and kinetochore fibers.

Authors :
Štimac V
Koprivec I
Manenica M
Simunić J
Tolić IM
Source :
ELife [Elife] 2022 Oct 21; Vol. 11. Date of Electronic Publication: 2022 Oct 21.
Publication Year :
2022

Abstract

The human mitotic spindle is made of microtubules nucleated at centrosomes, at kinetochores, and from pre-existing microtubules by the augmin complex. However, it is unknown how the augmin-mediated nucleation affects distinct microtubule classes and thereby mitotic fidelity. Here, we use superresolution microscopy to analyze the previously indistinguishable microtubule arrangements within the crowded metaphase plate area and demonstrate that augmin is vital for the formation of uniformly arranged parallel units consisting of sister kinetochore fibers connected by a bridging fiber. This ordered geometry helps both prevent and resolve merotelic attachments. Whereas augmin-nucleated bridging fibers prevent merotelic attachments by creating a nearly parallel and highly bundled microtubule arrangement unfavorable for creating additional attachments, augmin-nucleated k-fibers produce robust force required to resolve errors during anaphase. STED microscopy revealed that bridging fibers were impaired twice as much as k-fibers following augmin depletion. The complete absence of bridging fibers from a significant portion of kinetochore pairs, especially in the inner part of the spindle, resulted in the specific reduction of the interkinetochore distance. Taken together, we propose a model where augmin promotes mitotic fidelity by generating assemblies consisting of bridging and kinetochore fibers that align sister kinetochores to face opposite poles, thereby preventing erroneous attachments.<br />Competing Interests: VŠ, IK, MM, JS, IT No competing interests declared<br /> (© 2022, Štimac, Koprivec et al.)

Details

Language :
English
ISSN :
2050-084X
Volume :
11
Database :
MEDLINE
Journal :
ELife
Publication Type :
Academic Journal
Accession number :
36269126
Full Text :
https://doi.org/10.7554/eLife.83287