Back to Search Start Over

Dual inhibition of SGLT2 and DPP-4 promotes natriuresis and improves glomerular hemodynamic abnormalities in KK/Ta-Ins2 Akita mice with progressive diabetic kidney disease.

Authors :
Fujita H
Otomo H
Takahashi Y
Yamada Y
Source :
Biochemical and biophysical research communications [Biochem Biophys Res Commun] 2022 Dec 20; Vol. 635, pp. 84-91. Date of Electronic Publication: 2022 Oct 13.
Publication Year :
2022

Abstract

Natriuresis is closely linked to glomerular hemodynamics in diabetic kidney disease (DKD), and is known to be influenced by inhibition of sodium-glucose cotransporter 2 (SGLT2) or dipeptidyl peptidase-4 (DPP-4). In the present study, we investigated whether dual inhibition of SGLT2 and DPP-4 exerts an additive effect on promoting natriuresis and how it ameliorates glomerular hemodynamic abnormalities via the natriuretic effect in DKD. Eight-week-old male KK/Ta-Ins2 <superscript>Akita</superscript> (KK/Ta-Akita) mice which develop progressive DKD were orally once-daily given either SGLT2 inhibitor empagliflozin (30 mg/kg) alone, DPP-4 inhibitor linagliptin (5 mg/kg) alone or a combination of empagliflozin (30 mg/kg) plus linagliptin (5 mg/kg) for 6 weeks. In vehicle-treated control KK/Ta-Akita mouse group, markedly enhanced glomerular albumin filtration and glomerular filtration rate (GFR) were observed. These renal alterations were dramatically attenuated in KK/Ta-Akita mouse group treated with a combination of empagliflozin plus linagliptin. Notably, the combination therapy provided greater reduction in glomerular albumin filtration and GFR along with higher urinary excretion of sodium and a potential afferent arteriolar vasoconstrictor adenosine than the empagliflozin monotherapy. Significant reduction in urinary excretion levels of a potential afferent arteriolar vasodilator prostaglandin E2 (PGE2) relative to the baseline values was observed after the combination therapy but not the monotherapy. These results suggest that dual inhibition of SGLT2 and DPP-4 highly promotes a distal tubular sodium delivery and thereby contributes to the appropriate modulation of preglomerular arteriolar tone and intraglomerular pressure via an increase in adenosine release and a reduction in PGE2 secretion from macula densa in DKD.<br /> (Copyright © 2022 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2104
Volume :
635
Database :
MEDLINE
Journal :
Biochemical and biophysical research communications
Publication Type :
Academic Journal
Accession number :
36265286
Full Text :
https://doi.org/10.1016/j.bbrc.2022.10.034