Back to Search
Start Over
Antiplasmodial and Antimalarial Activity of 3,5-Diarylidenetetrahydro-2H-pyran-4(3H)-ones via Inhibition of Plasmodium falciparum Pyridoxal Synthase.
- Source :
-
ChemMedChem [ChemMedChem] 2023 Jan 03; Vol. 18 (1), pp. e202200411. Date of Electronic Publication: 2022 Nov 08. - Publication Year :
- 2023
-
Abstract
- A series of 22 different 3,5-diarylidenetetrahydro-2H-pyran-4(3H)-ones (DATPs) were synthesized, characterized, and screened for their in vitro antiplasmodial activities against chloroquine (CQ)-sensitive Pf3D7, CQ-resistant PfINDO, and artemisinin-resistant PfMRA-1240 strains of Plasmodium falciparum. DATP 19 (3,5-bis(4-hydroxy-3,5-dimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) was found to be the most potent (IC <subscript>50</subscript> 1.07 μM) against PfMRA-1240, whereas 21 (3,5-bis(3,4,5-trimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) showed IC <subscript>50</subscript> values of 1.72 and 1.44 μM against Pf3D7 and PfINDO, respectively. Resistance indices (RI) as low as 0.2 to 0.5 for 10 (3,5-bis(4-nitrobenzylidene)tetrahydro-2H-pyran-4(3H)-one) and 20 (3,5-bis(3-nitrobenzylidene)tetrahydro-2H-pyran-4(3H)-one), and <1 for most other DATPs reveals their greater potency against resistant strains than the sensitive one. The single-crystal XRD data for DATP 21 are reported. In silico support was obtained through docking studies. Killing all three strains within 4-8 h, these DATPs showed rapid kill kinetics toward the trophozoite stage. Furthermore, DATP 18 (3,5-bis(quinolin-4-ylmethylene)tetrahydro-2H-pyran-4(3H)-one) inhibited PfPdx1 enzyme activity with IC <subscript>50</subscript> 20.34 μM, which is about twofold lower than that (IC <subscript>50</subscript> 43 μM) for an already known inhibitor 4PEHz. At an oral dose of 300 mg/kg body weight, DATPs 19 and 21 were found to be nontoxic to mice, and at 100 mg/kg body weight, DATP 19 was found to suppress parasitaemia, which led to an increase in median survival time by three days relative to untreated control mice in a malaria curative study.<br /> (© 2022 Wiley-VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1860-7187
- Volume :
- 18
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- ChemMedChem
- Publication Type :
- Academic Journal
- Accession number :
- 36251345
- Full Text :
- https://doi.org/10.1002/cmdc.202200411