Back to Search
Start Over
Inverse Lindley power series distributions: a new compounding family and regression model with censored data.
- Source :
-
Journal of applied statistics [J Appl Stat] 2021 Aug 31; Vol. 49 (13), pp. 3451-3476. Date of Electronic Publication: 2021 Aug 31 (Print Publication: 2022). - Publication Year :
- 2021
-
Abstract
- This paper introduces a new class of distributions by compounding the inverse Lindley distribution and power series distributions which is called compound inverse Lindley power series (CILPS) distributions. An important feature of this distribution is that the lifetime of the component associated with a particular risk is not observable, rather only the minimum lifetime value among all risks is observable. Further, these distributions exhibit an unimodal failure rate. Various properties of the distribution are derived. Besides, two special models of the new family are investigated. The model parameters of the two sub-models of the new family are obtained by the methods of maximum likelihood, least square, weighted least square and maximum product of spacing and compared them using the Monte Carlo simulation study. Besides, the log compound inverse Lindley regression model for censored data is proposed. Three real data sets are analyzed to illustrate the flexibility and importance of the proposed models.<br />Competing Interests: No potential conflict of interest was reported by the author(s).<br /> (© 2021 Informa UK Limited, trading as Taylor & Francis Group.)
Details
- Language :
- English
- ISSN :
- 0266-4763
- Volume :
- 49
- Issue :
- 13
- Database :
- MEDLINE
- Journal :
- Journal of applied statistics
- Publication Type :
- Academic Journal
- Accession number :
- 36213781
- Full Text :
- https://doi.org/10.1080/02664763.2021.1951683