Back to Search Start Over

Genome engineering for estrogen receptor mutations reveals differential responses to anti-estrogens and new prognostic gene signatures for breast cancer.

Authors :
Harrod A
Lai CF
Goldsbrough I
Simmons GM
Oppermans N
Santos DB
Győrffy B
Allsopp RC
Toghill BJ
Balachandran K
Lawson M
Morrow CJ
Surakala M
Carnevalli LS
Zhang P
Guttery DS
Shaw JA
Coombes RC
Buluwela L
Ali S
Source :
Oncogene [Oncogene] 2022 Oct; Vol. 41 (44), pp. 4905-4915. Date of Electronic Publication: 2022 Oct 05.
Publication Year :
2022

Abstract

Mutations in the estrogen receptor (ESR1) gene are common in ER-positive breast cancer patients who progress on endocrine therapies. Most mutations localise to just three residues at, or near, the C-terminal helix 12 of the hormone binding domain, at leucine-536, tyrosine-537 and aspartate-538. To investigate these mutations, we have used CRISPR-Cas9 mediated genome engineering to generate a comprehensive set of isogenic mutant breast cancer cell lines. Our results confirm that L536R, Y537C, Y537N, Y537S and D538G mutations confer estrogen-independent growth in breast cancer cells. Growth assays show mutation-specific reductions in sensitivities to drugs representing three classes of clinical anti-estrogens. These differential mutation- and drug-selectivity profiles have implications for treatment choices following clinical emergence of ER mutations. Our results further suggest that mutant expression levels may be determinants of the degree of resistance to some anti-estrogens. Differential gene expression analysis demonstrates up-regulation of estrogen-responsive genes, as expected, but also reveals that enrichment for interferon-regulated gene expression is a common feature of all mutations. Finally, a new gene signature developed from the gene expression profiles in ER mutant cells predicts clinical response in breast cancer patients with ER mutations.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
1476-5594
Volume :
41
Issue :
44
Database :
MEDLINE
Journal :
Oncogene
Publication Type :
Academic Journal
Accession number :
36198774
Full Text :
https://doi.org/10.1038/s41388-022-02483-8