Back to Search Start Over

Using deep learning for gene detection and classification in raw nanopore signals.

Authors :
Nykrynova M
Jakubicek R
Barton V
Bezdicek M
Lengerova M
Skutkova H
Source :
Frontiers in microbiology [Front Microbiol] 2022 Sep 15; Vol. 13, pp. 942179. Date of Electronic Publication: 2022 Sep 15 (Print Publication: 2022).
Publication Year :
2022

Abstract

Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals-squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2022 Nykrynova, Jakubicek, Barton, Bezdicek, Lengerova and Skutkova.)

Details

Language :
English
ISSN :
1664-302X
Volume :
13
Database :
MEDLINE
Journal :
Frontiers in microbiology
Publication Type :
Academic Journal
Accession number :
36187947
Full Text :
https://doi.org/10.3389/fmicb.2022.942179