Back to Search
Start Over
Alpha-1 antitrypsin Pi∗Z allele is an independent risk factor for liver transplantation and death in patients with advanced chronic liver disease.
- Source :
-
JHEP reports : innovation in hepatology [JHEP Rep] 2022 Aug 20; Vol. 4 (11), pp. 100562. Date of Electronic Publication: 2022 Aug 20 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- Background & Aims: Alpha-1 antitrypsin (AAT) deficiency causes/predisposes individuals to advanced chronic liver disease (ACLD). However, the role of the SERPINA1 Pi∗Z allele in patients who have already progressed to ACLD is unclear. Thus, we aimed to evaluate the impact of the Pi∗Z allele on the risk of liver transplantation/liver-related death in patients with ACLD, while adjusting for the severity of liver disease at inclusion.<br />Methods: A total of 1,118 patients with ACLD who underwent hepatic venous pressure gradient (HVPG) measurement and genotyping for the Pi∗Z/Pi∗S allele at the Vienna Hepatic Hemodynamic Lab were included in this retrospective analysis. The outcome of interest was liver transplantation/liver-related death, while non-liver-related death and removal/suppression of the primary etiological factor were considered as competing risks.<br />Results: Viral hepatitis was the most common etiology (44%), followed by alcohol-related (31%) and non-alcoholic fatty liver disease (11%). Forty-two (4%) and forty-six (4%) patients harboured the Pi∗Z and Pi∗S variants, respectively. Pi∗Z carriers had more severe portal hypertension (HVPG: 19±6 vs. 15±7 mmHg; p < 0.001) and hepatic dysfunction (Child-Turcotte-Pugh: 7.1±1.9 vs. 6.5±1.9 points; p = 0.050) at inclusion, compared to non-carriers. Contrarily, the Pi∗S allele was unrelated to liver disease severity. In competing risk regression analysis, harbouring the Pi∗Z allele was significantly associated with an increased probability of liver transplantation/liver-related death, even after adjusting for liver disease severity at inclusion. The detrimental impact of the common Pi∗MZ genotype (adjusted subdistribution hazard ratio: ≈1.56 vs. Pi∗MM) was confirmed in a fully adjusted subgroup analysis. In contrast, Pi∗S carriers had no increased risk of events.<br />Conclusion: Genotyping for the Pi∗Z allele identifies patients with ACLD at increased risk of adverse liver-related outcomes, thereby improving prognostication. Therapies targeting the accumulation of abnormal AAT should be evaluated as disease-modifying treatments in Pi∗Z allele carriers with ACLD.<br />Lay Summary: Alpha-1 antitrypsin deficiency is a genetic disease that affects the lung and the liver. Carrying two dysfunctional copies of the gene causes advanced liver disease. Harbouring one dysfunctional copy increases disease severity in patients with other liver illness. However, the significance of this genetic defect in patients who already suffer from advanced liver disease is unclear. Our study found that harbouring at least one dysfunctional copy of the alpha-1 antitrypsin gene increases the risk of requiring a liver transplantation or dying from a liver disease. This indicates the need for medical therapies aimed at treating the hepatic consequences of this genetic defect.<br />Competing Interests: The authors have nothing to disclose regarding the work under consideration for publication. Conflicts of interests outside the submitted work: L.B., M.U., P.W., R.P., L.H., M.J., G.S., C.W., P.F., and A.F.S. have nothing to disclose. B.Sc. Received travel support from AbbVie, Ipsen, and Gilead. B.Si. Received travel support from AbbVie and Gilead. D.B. received speaker fees from AbbVie and Siemens, as well as grant support form Gilead and Siemens, as well as travel support from AbbVie and Gilead. M.P. served as a speaker and/or consultant and/or advisory board member for Bayer, Bristol-Myers Squibb, Eisai, Ipsen, Lilly, MSD, and Roche, and received travel support from Bayer and Bristol-Myers Squibb. P.F. served as a speaker and/or consultant and/or advisory board member for AbbVie, Gilead, MYR Pharmaceuticals, and Vivaraxx and received grants/research support from Gilead. M.T. served as a speaker and/or consultant and/or advisory board member for Albireo, BiomX, Falk, Boehringer Ingelheim, Bristol-Myers Squibb, Falk, Genfit, Gilead, Intercept, Janssen, MSD, Novartis, Phenex, Pliant, Regulus, and Shire, and received travel support from AbbVie, Falk, Gilead, and Intercept, as well as grants/research support from Albireo, Alnylam, Cymabay, Falk, Gilead, Intercept, MSD, Takeda, and UltraGenyx. He is also co-inventor of patents on the medical use of 24-norursodeoxycholic acid. T.R. served as a speaker and/or consultant and/or advisory board member for AbbVie, Bayer, Boehringer Ingelheim, Gilead, Intercept, MSD, Siemens, and W. L. Gore & Associates and received grants/research support from AbbVie, Boehringer Ingelheim, Gilead, Intercept, MSD, Myr Pharmaceuticals, Pliant, Philips, Siemens, and W. L. Gore & Associates as well as travel support from AbbVie, Boehringer Ingelheim, Gilead and Roche. M.M. served as a speaker and/or consultant and/or advisory board member for AbbVie, Gilead, and W. L. Gore & Associates and received travel support from AbbVie and Gilead. Please refer to the accompanying ICMJE disclosure forms for further details.<br /> (© 2022 The Authors.)
Details
- Language :
- English
- ISSN :
- 2589-5559
- Volume :
- 4
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- JHEP reports : innovation in hepatology
- Publication Type :
- Academic Journal
- Accession number :
- 36176936
- Full Text :
- https://doi.org/10.1016/j.jhepr.2022.100562