Back to Search Start Over

Chemoenzymatic catalytic synthesis of furfurylamine from hemicellulose in biomasses.

Authors :
He W
Ni J
He YC
Ye J
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2022 Dec 01; Vol. 222 (Pt A), pp. 1201-1210. Date of Electronic Publication: 2022 Sep 27.
Publication Year :
2022

Abstract

Recently, efficient synthesis of furan-based chemicals from biomacromolecule via chemoenzymatic approaches have been widely recognized. In this work, an efficient conversion of biomacromolecule (e.g., xylan in biomass) to furfurylamine (FLA) was developed in a tandem reaction by bridging with chemocatalysis and biocatalysis. Various biomasses (e.g., corncob, bagasse, bamboo shoot shell, corn stalk, rice straw stalk, reed, water bamboo and sunflower stalk) could produce different titer of furfural due to the diverse xylan content in biomass. After being catalyzed by shrimp shell-supported solid acid catalyst (Sn-DAT-SS) in deep eutectic solvent choline chloride:ethylene glycol (ChCl:EG) - water (10:90, v/v) at 170 °C after 30 min, corncob gave the highest furfural yield of 52.4 %. The potential catalytic mechanism for Sn-DAT-SS-catalyzing the conversion of biomass into furfural in ChCl:EG - water was proposed. It was found that by-products (formic acid, levulinic acid, 5-hydroxymethylfurfural) and soluble sugars (glucose, xylose, arabinose, cellobiose) produced during the conversion of biomass to furfural had certain inhibition effects on the biotransamination of furfural to FLA. Biomass-derived furfural (36.7-92.3 mM) could be fully aminated to FLA by E. coli CCZU-XLS160 cells harboring ω-transaminase after 24-72 h. The established chemoenzymatic strategy for converting biomacromolecules into valuable furan-based products was successfully developed in an eco-friendly system.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
222
Issue :
Pt A
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
36174871
Full Text :
https://doi.org/10.1016/j.ijbiomac.2022.09.215