Back to Search Start Over

An acetate-independent pathway for isopropanol production via HMG-CoA in Escherichia coli.

Authors :
Zhou J
Wang J
Yao M
He J
Yang Y
Li X
Tan Z
Shi H
Zhu X
Tian B
Source :
Journal of biotechnology [J Biotechnol] 2022 Nov 20; Vol. 359, pp. 29-34. Date of Electronic Publication: 2022 Sep 20.
Publication Year :
2022

Abstract

Isopropanol has a good potential as a new fuel substitution. In the model biosynthesis pathway of isopropanol synthesis, acetoacetyl-CoA is converted to acetoacetate by acetoacetyl-CoA transferases, which requires an acetate molecule as a substrate. Herein, a novel isopropanol synthesis pathway based on mammalian ketone metabolic pathway was developed. In this pathway, acetoacetyl-CoA is condensed with acetyl-CoA to generate 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by HMG-CoA synthase, and then catalyzed by HMG-CoA lyase to generate acetoacetate. This process is acetate-independent. Under the same experimental system using glycerol as carbon source, the E. coli strain MG::ISOP1 containing the novel pathway produced 11.7 times more isopropanol than the strain MG::ISOP0 containing the model pathway. The pta-ackA knockout mutant strain MG∆pta-ackA::ISOP1, which reduced the conversion of acetyl-CoA to acetate, further increased the production from 76 mg/L to 360 mg/L. In another strategy, knocking out atoDA to block the acetoacetate degradation pathway in strain MG∆atoDA::ISOP1 increased the production to 680 mg/L. By knocking out both of pta-ackA and atoDA, strain MGΔpta-ackAΔatoDA::ISOP1 produced 964 mg/L of isopropanol, which was 12.7 times that of MG::ISOP1. This study indicated that the novel pathway is competent for isopropanol synthesis, and provides a new perspective for biosynthesis of isopropanol.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-4863
Volume :
359
Database :
MEDLINE
Journal :
Journal of biotechnology
Publication Type :
Academic Journal
Accession number :
36150604
Full Text :
https://doi.org/10.1016/j.jbiotec.2022.09.011