Back to Search
Start Over
Rvb1/Rvb2 proteins couple transcription and translation during glucose starvation.
- Source :
-
ELife [Elife] 2022 Sep 15; Vol. 11. Date of Electronic Publication: 2022 Sep 15. - Publication Year :
- 2022
-
Abstract
- During times of unpredictable stress, organisms must adapt their gene expression to maximize survival. Along with changes in transcription, one conserved means of gene regulation during conditions that quickly repress translation is the formation of cytoplasmic phase-separated mRNP granules such as P-bodies and stress granules. Previously, we identified that distinct steps in gene expression can be coupled during glucose starvation as promoter sequences in the nucleus are able to direct the subcellular localization and translatability of mRNAs in the cytosol. Here, we report that Rvb1 and Rvb2, conserved ATPase proteins implicated as protein assembly chaperones and chromatin remodelers, were enriched at the promoters and mRNAs of genes involved in alternative glucose metabolism pathways that we previously found to be transcriptionally upregulated but translationally downregulated during glucose starvation in yeast. Engineered Rvb1/Rvb2-binding on mRNAs was sufficient to sequester mRNAs into mRNP granules and repress their translation. Additionally, this Rvb tethering to the mRNA drove further transcriptional upregulation of the target genes. Further, we found that depletion of Rvb2 caused decreased alternative glucose metabolism gene mRNA induction, but upregulation of protein synthesis during glucose starvation. Overall, our results point to Rvb1/Rvb2 coupling transcription, mRNA granular localization, and translatability of mRNAs during glucose starvation. This Rvb-mediated rapid gene regulation could potentially serve as an efficient recovery plan for cells after stress removal.<br />Competing Interests: YC, WH, ST, AH, VH, FX, JM, JY, BZ No competing interests declared<br /> (© 2022, Chen et al.)
- Subjects :
- Chromatin metabolism
DNA Helicases metabolism
RNA, Messenger genetics
RNA, Messenger metabolism
Saccharomyces cerevisiae genetics
Saccharomyces cerevisiae metabolism
Saccharomyces cerevisiae Proteins genetics
Adenosine Triphosphatases metabolism
Glucose metabolism
Saccharomyces cerevisiae Proteins metabolism
Transcription Factors metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2050-084X
- Volume :
- 11
- Database :
- MEDLINE
- Journal :
- ELife
- Publication Type :
- Academic Journal
- Accession number :
- 36107469
- Full Text :
- https://doi.org/10.7554/eLife.76965