Back to Search Start Over

Yarn-Level Simulation of Hygroscopicity of Woven Textiles.

Authors :
Mao A
Dong W
Xie C
Wang H
Liu YJ
Li G
He Y
Source :
IEEE transactions on visualization and computer graphics [IEEE Trans Vis Comput Graph] 2023 Dec; Vol. 29 (12), pp. 5250-5264. Date of Electronic Publication: 2023 Nov 10.
Publication Year :
2023

Abstract

Simulating liquid-textile interaction has received great attention in computer graphics recently. Most existing methods take textiles as particles or parameterized meshes. Although these methods can generate visually pleasing results, they cannot simulate water content at a microscopic level due to the lack of geometrically modeling of textile's anisotropic structure. In this paper, we develop a method for yarn-level simulation of hygroscopicity of textiles and evaluate it using various quantitative metrics. We model textiles in a fiber-yarn-fabric multi-scale manner and consider the dynamic coupled physical mechanisms of liquid spreading, including wetting, wicking, moisture sorption/desorption, and transient moisture-heat transfer in textiles. Our method can accurately simulate liquid spreading on textiles with different fiber materials and geometrical structures with consideration of air temperatures and humidity conditions. It visualizes the hygroscopicity of textiles to demonstrate their moisture management ability. We conduct qualitative and quantitative experiments to validate our method and explore various factors to analyze their influence on liquid spreading and hygroscopicity of textiles.

Details

Language :
English
ISSN :
1941-0506
Volume :
29
Issue :
12
Database :
MEDLINE
Journal :
IEEE transactions on visualization and computer graphics
Publication Type :
Academic Journal
Accession number :
36103450
Full Text :
https://doi.org/10.1109/TVCG.2022.3206579