Back to Search
Start Over
A Supervised Contrastive Learning-based Analysis of rs-tMRI Data Captures Gender Differences in Nonlinear Functional Network Coupling.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2022 Jul; Vol. 2022, pp. 4641-4644. - Publication Year :
- 2022
-
Abstract
- Many studies in neuroscience have focused on interpreting brain activity using functional connectivity (FC). The most widely used approach for measuring FC is based on linear correlation (e.g., the Pearson correlation), where the temporal cofluctuations between functional brain regions are computed. However, such approaches ignore nonlinear dependencies among regions that might carry distinctive information across groups of subjects. In this study, we offer a deep learning-based approach that also captures nonlinear temporal relationships between brain networks. Our approach consists of two main parts: an encoder that learns domain-specific embeddings of time courses estimated from independent component analysis (ICA) and a similarity metric that measures the similarities between the embeddings. We call such similarities as nonlinear functional relationships between networks. Our findings on a large dataset (including above 11k normal control subjects) suggest that male subjects exhibit stronger nonlinear network-network relationships than female subjects in most cases. Furthermore, we observe that, unlike FC, our approach could capture some intra-network relationships, especially between cognitive control and visual networks, which are significantly different between males and females, suggesting that our approach can provide a complementary interpretation of the functional brain activity to FC.
- Subjects :
- Female
Humans
Male
Sex Factors
Brain diagnostic imaging
Magnetic Resonance Imaging
Subjects
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2022
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 36085950
- Full Text :
- https://doi.org/10.1109/EMBC48229.2022.9871796