Back to Search
Start Over
Electromagnetic-Interference-Shielding Effectiveness of Lyocell-Based Carbon Fabrics Carbonized at Various Temperatures.
- Source :
-
Molecules (Basel, Switzerland) [Molecules] 2022 Aug 24; Vol. 27 (17). Date of Electronic Publication: 2022 Aug 24. - Publication Year :
- 2022
-
Abstract
- Lyocell is a biodegradable filament yarn obtained by directly dissolving cellulose in a mixture of N -methylmorpholine- N -oxide and a non-toxic solvent. Therefore, herein, lyocell fabrics were employed as eco-friendly carbon-precursor substitutes for use as electromagnetic interference (EMI) shielding materials. First, a lyocell fabric treated with polyacrylamide via electron beam irradiation reported in a previous study to increase carbon yields and tensile strengths was carbonized by heating to 900, 1100, and 1300 °C. The carbonization transformed the fabric into a graphitic crystalline structure, and its electrical conductivity and EMI shielding effectiveness (SE) were enhanced despite the absence of metals. For a single sheet, the electrical conductivities of the lyocell-based carbon fabric samples at the different carbonization temperatures were 3.57, 5.96, and 8.91 S m <superscript>-1</superscript> , leading to an EMI SE of approximately 18, 35, and 82 dB at 1.5-3.0 GHz, respectively. For three sheets of fabric carbonized at 1300 °C, the electrical conductivity was 10.80 S m <superscript>-1</superscript> , resulting in an excellent EMI SE of approximately 105 dB. Generally, EM radiation is reduced by 99.9999% in instances when the EMI SE was over 60 dB. The EMI SE of the three lyocell-based carbon fabric sheets obtained at 1100 °C and that of all the sheets of the sample obtained at 1300 °C exceeded approximately 60 dB.
- Subjects :
- Electromagnetic Phenomena
Temperature
Textiles
Graphite
Nanotubes, Carbon chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1420-3049
- Volume :
- 27
- Issue :
- 17
- Database :
- MEDLINE
- Journal :
- Molecules (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 36080158
- Full Text :
- https://doi.org/10.3390/molecules27175392