Back to Search Start Over

Consolidated Bioprocessing in a Dairy Setting─Concurrent Yoghurt Fermentation and Lactose Hydrolysis without Using Lactase Enzymes.

Authors :
Tadesse BT
Zhao G
Kempen P
Solem C
Source :
Journal of agricultural and food chemistry [J Agric Food Chem] 2022 Sep 21; Vol. 70 (37), pp. 11623-11630. Date of Electronic Publication: 2022 Sep 03.
Publication Year :
2022

Abstract

Streptococcus thermophilus is a fast-growing lactic acid bacterium (LAB) used in yoghurt and cheese manufacturing. Recently, we reported how this bacterium could serve as a cell catalyst for hydrolyzing lactose when permeabilized by nisin A. To enhance the lactose hydrolyzing activity of S. thermophilus , we mutated a dairy strain and screened for variants with elevated β-galactosidase activity. Two isolates, ST30-8 and ST95, had 2.4-fold higher activity. Surprisingly, both strains were able to hydrolyze lactose when used as whole-cell lactase catalysts without permeabilization, and ST30-8 hydrolyzed 30 g/L lactose in 6 h at 50 °C using 0.18 g/L cells. Moreover, both strains hydrolyzed lactose while growing in milk. Genome sequencing revealed a mutation in l-lactate dehydrogenase, which we believe hampers growth and increases the capacity of S. thermophilus to hydrolyze lactose. Our findings will allow production of sweet lactose-reduced yoghurt without the use of costly purified lactase enzymes.

Details

Language :
English
ISSN :
1520-5118
Volume :
70
Issue :
37
Database :
MEDLINE
Journal :
Journal of agricultural and food chemistry
Publication Type :
Academic Journal
Accession number :
36057098
Full Text :
https://doi.org/10.1021/acs.jafc.2c04191