Back to Search
Start Over
Therapeutic effects of MSCs, genetically modified MSCs, and NFĸB-inhibitor on chronic inflammatory osteolysis in aged mice.
- Source :
-
Journal of orthopaedic research : official publication of the Orthopaedic Research Society [J Orthop Res] 2023 May; Vol. 41 (5), pp. 1004-1013. Date of Electronic Publication: 2022 Sep 08. - Publication Year :
- 2023
-
Abstract
- The number of total joint replacements is increasing, especially in elderly patients, and so too are implant-related complications such as prosthesis loosening. Wear particles from the prosthesis induce a chronic inflammatory reaction and subsequent osteolysis, leading to the need for revision surgery. This study investigated the therapeutic effect of NF-ĸB decoy oligodeoxynucleotides (ODN), mesenchymal stem cells (MSCs), and genetically-modified NF-ĸB sensing interleukin-4 over-secreting MSCs (IL4-MSCs) on chronic inflammation in aged mice. The model was generated by continuous infusion of contaminated polyethylene particles into the intramedullary space of the distal femur of aged mice (15-17 months old) for 6 weeks. Local delivery of ODN showed increased bone mineral density (BMD), decreased osteoclast-like cells, increased alkaline phosphatase (ALP)-positive area, and increased M2/M1 macrophage ratio. Local injection of MSCs and IL4-MSCs significantly decreased osteoclast-like cells and increased the M2/M1 ratio, with a greater trend for IL4-MSCs than MSCs. MSCs significantly increased ALP-positive area and BMD values compared with the control. The IL4-MSCs demonstrated higher values for both ALP-positive area and BMD. These findings demonstrated the therapeutic effects of ODN, MSCs, and IL4-MSCs on chronic inflammatory osteolysis in aged mice. The two MSC-based therapies were more effective than ODN in increasing the M2/M1 macrophage ratio, reducing bone resorption, and increasing bone formation. Specifically, MSCs were more effective in increasing bone formation, and IL4-MSCs were more effective in mitigating inflammation. This study suggests potential therapeutic strategies for treating wear particle-associated inflammatory osteolysis after arthroplasty in the elderly.<br /> (© 2022 Orthopaedic Research Society. Published by Wiley Periodicals LLC.)
Details
- Language :
- English
- ISSN :
- 1554-527X
- Volume :
- 41
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
- Publication Type :
- Academic Journal
- Accession number :
- 36031590
- Full Text :
- https://doi.org/10.1002/jor.25434