Back to Search Start Over

Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought.

Authors :
Schönbeck LC
Schuler P
Lehmann MM
Mas E
Mekarni L
Pivovaroff AL
Turberg P
Grossiord C
Source :
Plant, cell & environment [Plant Cell Environ] 2022 Nov; Vol. 45 (11), pp. 3275-3289. Date of Electronic Publication: 2022 Sep 01.
Publication Year :
2022

Abstract

Temperature (T) and vapour pressure deficit (VPD) are important drivers of plant hydraulic conductivity, growth, mortality, and ecosystem productivity, independently of soil water availability. Our goal was to disentangle the effects of T and VPD on plant hydraulic responses. Young trees of Fagus sylvatica L., Quercus pubescens Willd. and Quercus ilex L. were exposed to a cross-combination of a T and VPD manipulation under unlimited soil water availability. Stem hydraulic conductivity and leaf-level hydraulic traits (e.g., gas exchange and osmotic adjustment) were tracked over a full growing season. Significant loss of xylem conductive area (PLA) was found in F. sylvatica and Q. pubescens due to rising VPD and T, but not in Q. ilex. Increasing T aggravated the effects of high VPD in F. sylvatica only. PLA was driven by maximum hydraulic conductivity and minimum leaf conductance, suggesting that high transpiration and water loss after stomatal closure contributed to plant hydraulic stress. This study shows for the first time that rising VPD and T lead to losses of stem conductivity even when soil water is not limiting, highlighting their rising importance in plant mortality mechanisms in the future.<br /> (© 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1365-3040
Volume :
45
Issue :
11
Database :
MEDLINE
Journal :
Plant, cell & environment
Publication Type :
Academic Journal
Accession number :
36030547
Full Text :
https://doi.org/10.1111/pce.14425