Back to Search
Start Over
Ubiquitination as a key regulatory mechanism for O 3 -induced cutaneous redox inflammasome activation.
- Source :
-
Redox biology [Redox Biol] 2022 Oct; Vol. 56, pp. 102440. Date of Electronic Publication: 2022 Aug 21. - Publication Year :
- 2022
-
Abstract
- NLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O <subscript>3</subscript> ) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators. However, whether NLRP1 can be modulated by air pollutants via oxidative stress and the mechanism behind its activation is still poorly understood. Here we report for the first time that O <subscript>3</subscript> , one of the most toxic pollutants, activates the NLRP1 inflammasome in human keratinocytes via oxidative stress mediators as hydrogen peroxide (H <subscript>2</subscript> O <subscript>2</subscript> ) and 4-hydroxy-nonenal (4HNE). Our data suggest that NLRP1 represents a target protein for 4HNE adduction that possibly leads to its proteasomal degradation and activation via the possible involvement of E3 ubiquitin ligase UBR2. Of note, Catalase (Cat) treatment prevented inflammasome assemble and inflammatory cytokines release as well as NLRP1 ubiquitination in human keratinocytes upon O <subscript>3</subscript> exposure. The present work is a mechanistic study that follows our previous work where we have showed the ability of O <subscript>3</subscript> to induce cutaneous inflammasome activation in humans exposed to this pollutant. In conclusion, our results suggest that O <subscript>3</subscript> triggers the cutaneous NLRP1 inflammasome activation by ubiquitination and redox mechanism.<br />Competing Interests: Declaration of competing interest The authors declare no competing interests.<br /> (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Subjects :
- Adaptor Proteins, Signal Transducing metabolism
Apoptosis Regulatory Proteins genetics
Catalase metabolism
Cytokines metabolism
Humans
Hydrogen Peroxide metabolism
Inflammasomes metabolism
NLR Proteins metabolism
Oxidation-Reduction
Particulate Matter
Reactive Oxygen Species metabolism
Ubiquitin-Protein Ligases metabolism
Ubiquitination
Air Pollutants
Environmental Pollutants
Ozone metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2213-2317
- Volume :
- 56
- Database :
- MEDLINE
- Journal :
- Redox biology
- Publication Type :
- Academic Journal
- Accession number :
- 36027676
- Full Text :
- https://doi.org/10.1016/j.redox.2022.102440