Back to Search Start Over

Identification of nine signature proteins involved in periodontitis by integrated analysis of TMT proteomics and transcriptomics.

Authors :
Liu W
Qiu W
Huang Z
Zhang K
Wu K
Deng K
Chen Y
Guo R
Wu B
Chen T
Fang F
Source :
Frontiers in immunology [Front Immunol] 2022 Aug 09; Vol. 13, pp. 963123. Date of Electronic Publication: 2022 Aug 09 (Print Publication: 2022).
Publication Year :
2022

Abstract

Recently, there are many researches on signature molecules of periodontitis derived from different periodontal tissues to determine the disease occurrence and development, and deepen the understanding of this complex disease. Among them, a variety of omics techniques have been utilized to analyze periodontitis pathology and progression. However, few accurate signature molecules are known and available. Herein, we aimed to screened and identified signature molecules suitable for distinguishing periodontitis patients using machine learning models by integrated analysis of TMT proteomics and transcriptomics with the purpose of finding novel prediction or diagnosis targets. Differential protein profiles, functional enrichment analysis, and protein-protein interaction network analysis were conducted based on TMT proteomics of 15 gingival tissues from healthy and periodontitis patients. DEPs correlating with periodontitis were screened using LASSO regression. We constructed a new diagnostic model using an artificial neural network (ANN) and verified its efficacy based on periodontitis transcriptomics datasets (GSE10334 and GSE16134). Western blotting validated expression levels of hub DEPs. TMT proteomics revealed 5658 proteins and 115 DEPs, and the 115 DEPs are closely related to inflammation and immune activity. Nine hub DEPs were screened by LASSO, and the ANN model distinguished healthy from periodontitis patients. The model showed satisfactory classification ability for both training (AUC=0.972) and validation (AUC=0.881) cohorts by ROC analysis. Expression levels of the 9 hub DEPs were validated and consistent with TMT proteomics quantitation. Our work reveals that nine hub DEPs in gingival tissues are closely related to the occurrence and progression of periodontitis and are potential signature molecules involved in periodontitis.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2022 Liu, Qiu, Huang, Zhang, Wu, Deng, Chen, Guo, Wu, Chen and Fang.)

Details

Language :
English
ISSN :
1664-3224
Volume :
13
Database :
MEDLINE
Journal :
Frontiers in immunology
Publication Type :
Academic Journal
Accession number :
36016933
Full Text :
https://doi.org/10.3389/fimmu.2022.963123