Back to Search Start Over

Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites.

Authors :
Alshammari BA
Alenad AM
Al-Mubaddel FS
Alharbi AG
Al-Shehri AS
Albalwi HA
Alsuabie FM
Fouad H
Mourad AI
Source :
Polymers [Polymers (Basel)] 2022 Aug 22; Vol. 14 (16). Date of Electronic Publication: 2022 Aug 22.
Publication Year :
2022

Abstract

The main objective of this work is to develop a variety of hybrid high-density polyethylene (HDPE) micro- and nanocomposites and to investigate their thermal, mechanical, and morphological characteristics as a function of number of fillers and their contents percentage. In this study, 21 formulations of the composites were prepared using fillers with different sizes including micro fillers such as talc, calcium carbonate (CaCO <subscript>3</subscript> ), as well as nano-filler (fumed silica (FS)) though the melt blending technique. The morphological, mechanical, and thermal properties of the composite samples were evaluated. The morphological study revealed negligible filler agglomerates, good matrix-filler interfacial bonding in case of combined both CaCO <subscript>3</subscript> and FS into the composites. Sequentially, improvements in tensile, flexural and Izod impact strengths as a function of fillers loading in the HDPE matrix have been reported. The maximum enhancement (%) of tensile, flexural and impact strengths were 127%, 86% and 16.6%, respectively, for composites containing 25% CaCO <subscript>3</subscript> and 1% FS without any inclusion of talc filler; this indicates that the types/nature, size, quantity and dispersion status of fillers are playing a major role in the mechanical properties of the prepared composites more than the number of the used fillers.

Details

Language :
English
ISSN :
2073-4360
Volume :
14
Issue :
16
Database :
MEDLINE
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
36015684
Full Text :
https://doi.org/10.3390/polym14163427