Back to Search Start Over

Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques.

Authors :
Chaganti R
Rustam F
De La Torre Díez I
Mazón JLV
Rodríguez CL
Ashraf I
Source :
Cancers [Cancers (Basel)] 2022 Aug 13; Vol. 14 (16). Date of Electronic Publication: 2022 Aug 13.
Publication Year :
2022

Abstract

Thyroid disease prediction has emerged as an important task recently. Despite existing approaches for its diagnosis, often the target is binary classification, the used datasets are small-sized and results are not validated either. Predominantly, existing approaches focus on model optimization and the feature engineering part is less investigated. To overcome these limitations, this study presents an approach that investigates feature engineering for machine learning and deep learning models. Forward feature selection, backward feature elimination, bidirectional feature elimination, and machine learning-based feature selection using extra tree classifiers are adopted. The proposed approach can predict Hashimoto's thyroiditis (primary hypothyroid), binding protein (increased binding protein), autoimmune thyroiditis (compensated hypothyroid), and non-thyroidal syndrome (NTIS) (concurrent non-thyroidal illness). Extensive experiments show that the extra tree classifier-based selected feature yields the best results with 0.99 accuracy and an F1 score when used with the random forest classifier. Results suggest that the machine learning models are a better choice for thyroid disease detection regarding the provided accuracy and the computational complexity. K-fold cross-validation and performance comparison with existing studies corroborate the superior performance of the proposed approach.

Details

Language :
English
ISSN :
2072-6694
Volume :
14
Issue :
16
Database :
MEDLINE
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
36010907
Full Text :
https://doi.org/10.3390/cancers14163914