Back to Search Start Over

Impaired Cdc20 signaling promotes senescence in normal cells and apoptosis in non-small cell lung cancer cells.

Authors :
Volonte D
Sedorovitz M
Galbiati F
Source :
The Journal of biological chemistry [J Biol Chem] 2022 Oct; Vol. 298 (10), pp. 102405. Date of Electronic Publication: 2022 Aug 19.
Publication Year :
2022

Abstract

Cellular senescence is a form of irreversible growth arrest that cancer cells evade. The cell division cycle protein 20 homolog (Cdc20) is a positive regulator of cell division, but how its dysregulation may relate to senescence is unclear. Here, we find that Cdc20 mRNA and protein expression are downregulated in stress-induced premature senescent lung fibroblasts in a p53-dependent manner. Either Cdc20 downregulation or inhibition of anaphase-promoting complex/cyclosome (APC/C) is sufficient to induce premature senescence in lung fibroblasts, while APC/C activation inhibits stress-induced premature senescence. Mechanistically, we show both Cdc20 downregulation and APC/C inhibition induce premature senescence through glycogen synthase kinase (GSK)-3β-mediated phosphorylation and downregulation of securin expression. Interestingly, we determined Cdc20 expression is upregulated in human lung adenocarcinoma. We find that downregulation of Cdc20 in non-small cell lung cancer (NSCLC) cells is sufficient to inhibit cell proliferation and growth in soft agar and to promote apoptosis, but not senescence, in a manner dependent on downregulation of securin following GSK-3β-mediated securin phosphorylation. Similarly, we demonstrate securin expression is downregulated and cell viability is inhibited in NSCLC cells following inhibition of APC/C. Furthermore, we show chemotherapeutic drugs downregulate both Cdc20 and securin protein expression in NSCLC cells. Either Cdc20 downregulation by siRNA or APC/C inhibition sensitize, while securin overexpression inhibits, chemotherapeutic drug-induced NSCLC cell death. Together, our findings provide evidence that Cdc20/APC/C/securin-dependent signaling is a key regulator of cell survival, and its disruption promotes premature senescence in normal lung cells and induces apoptosis in lung cancer cells that have bypassed the senescence barrier.<br />Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.<br /> (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1083-351X
Volume :
298
Issue :
10
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
35988650
Full Text :
https://doi.org/10.1016/j.jbc.2022.102405