Back to Search Start Over

Deep networks for behavioral variant frontotemporal dementia identification from multiple acquisition sources.

Authors :
Di Benedetto M
Carrara F
Tafuri B
Nigro S
De Blasi R
Falchi F
Gennaro C
Gigli G
Logroscino G
Amato G
Source :
Computers in biology and medicine [Comput Biol Med] 2022 Sep; Vol. 148, pp. 105937. Date of Electronic Publication: 2022 Aug 08.
Publication Year :
2022

Abstract

Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative syndrome whose clinical diagnosis remains a challenging task especially in the early stage of the disease. Currently, the presence of frontal and anterior temporal lobe atrophies on magnetic resonance imaging (MRI) is part of the diagnostic criteria for bvFTD. However, MRI data processing is usually dependent on the acquisition device and mostly require human-assisted crafting of feature extraction. Following the impressive improvements of deep architectures, in this study we report on bvFTD identification using various classes of artificial neural networks, and present the results we achieved on classification accuracy and obliviousness on acquisition devices using extensive hyperparameter search. In particular, we will demonstrate the stability and generalization of different deep networks based on the attention mechanism, where data intra-mixing confers models the ability to identify the disorder even on MRI data in inter-device settings, i.e., on data produced by different acquisition devices and without model fine tuning, as shown from the very encouraging performance evaluations that dramatically reach and overcome the 90% value on the AuROC and balanced accuracy metrics.<br /> (Copyright © 2022. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
1879-0534
Volume :
148
Database :
MEDLINE
Journal :
Computers in biology and medicine
Publication Type :
Academic Journal
Accession number :
35985188
Full Text :
https://doi.org/10.1016/j.compbiomed.2022.105937