Back to Search
Start Over
WWOX inhibition by Zfra1-31 restores mitochondrial homeostasis and viability of neuronal cells exposed to high glucose.
- Source :
-
Cellular and molecular life sciences : CMLS [Cell Mol Life Sci] 2022 Aug 19; Vol. 79 (9), pp. 487. Date of Electronic Publication: 2022 Aug 19. - Publication Year :
- 2022
-
Abstract
- Diabetes has been associated with an increased risk of cognitive decline and dementia. However, the mechanisms underlying this association remain unclear and no effective therapeutic interventions exist. Accumulating evidence demonstrates that mitochondrial defects are a key feature of diabetes contributing to neurodegenerative events. It has also been demonstrated that the putative tumor suppressor WW domain-containing oxidoreductase 1 (WWOX) can interact with mitochondria in several pathological conditions. However, its role in diabetes-associated neurodegeneration remains unknown. So, this study aimed to evaluate the role of WWOX activation in high glucose-induced neuronal damage and death. Our experiments were mainly performed in differentiated SH-SY5Y neuroblastoma cells exposed to high glucose and treated (or not) with Zfra1-31, the specific inhibitor of WWOX. Several parameters were analyzed namely cell viability, WWOX activation (tyrosine 33 residue phosphorylation), mitochondrial function, reactive oxygen species (ROS) production, biogenesis, and dynamics, autophagy and oxidative stress/damage. The levels of the neurotoxic proteins amyloid β (Aβ) and phosphorylated Tau (pTau) and of synaptic integrity markers were also evaluated. We observed that high glucose increased the levels of activated WWOX. Interestingly, brain cortical and hippocampal homogenates from young (6-month old) diabetic GK rats showed increased levels of activated WWOX compared to older GK rats (12-month old) suggesting that WWOX plays an early role in the diabetic brain. In neuronal cells, high glucose impaired mitochondrial respiration, dynamics and biogenesis, increased mitochondrial ROS production and decreased mitochondrial membrane potential and ATP production. More, high glucose augmented oxidative stress/damage and the levels of Aβ and pTau proteins and affected autophagy, contributing to the loss of synaptic integrity and cell death. Of note, the activation of WWOX preceded mitochondrial dysfunction and cell death. Importantly, the inhibition of WWOX with Zfra1-31 reversed, totally or partially, the alterations promoted by high glucose. Altogether our observations demonstrate that under high glucose conditions WWOX activation contributes to mitochondrial anomalies and neuronal damage and death, which suggests that WWOX is a potential therapeutic target for early interventions. Our findings also support the efficacy of Zfra1-31 in treating hyperglycemia/diabetes-associated neurodegeneration.<br /> (© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
- Subjects :
- Animals
Humans
Rats
Glucose metabolism
Glucose pharmacology
Homeostasis
Oxidative Stress
Reactive Oxygen Species metabolism
Tumor Suppressor Proteins genetics
Tumor Suppressor Proteins metabolism
Amyloid beta-Peptides metabolism
Mitochondria metabolism
Neuroblastoma metabolism
WW Domain-Containing Oxidoreductase genetics
WW Domain-Containing Oxidoreductase metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1420-9071
- Volume :
- 79
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Cellular and molecular life sciences : CMLS
- Publication Type :
- Academic Journal
- Accession number :
- 35984507
- Full Text :
- https://doi.org/10.1007/s00018-022-04508-7