Back to Search Start Over

Identification of proline-rich protein 11 as a major regulator in mouse spermatogonia maintenance via an increase in BMI1 protein stability.

Authors :
Xue J
Wu T
Huang C
Shu M
Shen C
Zheng B
Lv J
Source :
Molecular biology reports [Mol Biol Rep] 2022 Oct; Vol. 49 (10), pp. 9555-9564. Date of Electronic Publication: 2022 Aug 18.
Publication Year :
2022

Abstract

Background: Spermatogenesis accompanied by self-renewal and differentiation of spermatogonia under complicated regulation is crucial for male fertility. Our previous study demonstrated that the loss of the B-lymphoma Mo-MLV insertion region 1 (BMI1) could cause male infertility and found a potential interaction between BMI1 and proline-rich protein 11 (PRR11); however, the specific co-regulatory effects of BMI1/PRR11 on spermatogonia maintenance remain unclear.<br />Methods and Results: The expression of PRR11 was downregulated in a mouse spermatogonia cell line (GC-1) via transfection with PRR11-siRNAs, and PRR11 knockdown was verified by real-time reverse transcriptase polymerase chain reaction (RT-qPCR). The proliferative activity of GC-1 cells was determined using the cell counting kit (CCK-8), colony formation, and 5-ethynyl-2-deoxyuridine (EdU) incorporation assay. A Transwell assay was performed to evaluate the effects of PRR11 on GC-1 cell migration. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to measure GC-1 cell apoptosis. Furthermore, co-immunoprecipitation, RT-qPCR, and western blot analyses were used for investigating the regulatory mechanisms involved in this regulation. It was found that downregulation of PRR11 could cause a marked inhibition of proliferation and migration and induced apoptosis in GC-1 cells. Moreover, silencing of PRR11 obviously led to a reduction in the BMI1 protein level. PRR11 was found to interact with BMII at the endogenous protein level. PRR11 knockdown produced a decrease in BMI1 protein stability via an increase in BMI1 ubiquitination after which derepression in the transcription of protein tyrosine phosphatase receptor type M (Ptprm) occurred. Importantly, knockdown of Ptprm in PRR11-deficient GC-1 cells led to a reversal of proliferation and migration of GC-1 cells.<br />Conclusions: This study uncovered a novel mechanism by which PRR11 cooperated with BMI1 to facilitate GC-1 maintenance through targeting Ptprm. Our findings may provide a better understanding of the regulatory network in spermatogonia maintenance.<br /> (© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)

Details

Language :
English
ISSN :
1573-4978
Volume :
49
Issue :
10
Database :
MEDLINE
Journal :
Molecular biology reports
Publication Type :
Academic Journal
Accession number :
35980531
Full Text :
https://doi.org/10.1007/s11033-022-07846-8