Back to Search
Start Over
Image Segmentation Technology Based on Attention Mechanism and ENet.
- Source :
-
Computational intelligence and neuroscience [Comput Intell Neurosci] 2022 Aug 04; Vol. 2022, pp. 9873777. Date of Electronic Publication: 2022 Aug 04 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- With the development of today's society, medical technology is becoming more and more important in people's daily diagnosis and treatment and the number of computed tomography (CT) images and MRI images is also increasing. It is difficult to meet today's needs for segmentation and recognition of medical images by manpower alone. Therefore, the use of computer technology for automatic segmentation has received extensive attention from researchers. We design a tooth CT image segmentation method combining attention mechanism and ENet. First, dilated convolution is used with the spatial information path, with a small downsampling factor to preserve the resolution of the image. Second, an attention mechanism is added to the segmentation network based on CT image features to improve the accuracy of segmentation. Then, the designed feature fusion module obtains the segmentation result of the tooth CT image. It was verified on tooth CT image dataset published by West China Hospital, and the average intersection ratio and accuracy were used as the metric. The results show that, on the dataset of West China Hospital, Mean Intersection over Union (MIOU) and accuracy are 83.47% and 95.28%, respectively, which are 3.3% and 8.09% higher than the traditional model. Compared with the multiple watershed algorithm, the Chan-Vese segmentation algorithm, and the graph cut segmentation algorithm, our algorithm increases the calculation time by 56.52%, 91.52%, and 62.96%, respectively. It can be seen that our algorithm has obvious advantages in MIOU, accuracy, and calculation time.<br />Competing Interests: The authors declare that there are no conflicts of interest regarding the publication of this paper.<br /> (Copyright © 2022 Ling Ma et al.)
Details
- Language :
- English
- ISSN :
- 1687-5273
- Volume :
- 2022
- Database :
- MEDLINE
- Journal :
- Computational intelligence and neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 35965775
- Full Text :
- https://doi.org/10.1155/2022/9873777