Back to Search Start Over

Atractylodes-I Overcomes the Oxidative Stress-induced Colonic Mucosal Epithelial Cells Dysfunction to Prevent Irritable Bowel Syndrome Via Modulating the miR-34a-5p-LDHA Signaling Pathway.

Authors :
Xu R
Liu X
Tian M
Chen D
Source :
Current molecular medicine [Curr Mol Med] 2023; Vol. 23 (8), pp. 825-833.
Publication Year :
2023

Abstract

Background: Irritable bowel syndrome (IBS) is a known brain-gut disorder. Currently, the molecular and cellular mechanisms of IBS remain unclear. Atractylenolide-I (ATL-I) is a majorly bioactive component extracted from Rhizoma Atractylodes Macrocephalae .<br />Methods: Studies have revealed that ATL-I functioned as an anti-tumor drug in various cancers. However, the effects and molecular mechanisms of ATL-I on the pathological processes of colonic mucosal epithelial cells (CMECs) during IBS remain unclear. This study reports ATL-I effectively alleviated the oxidative stress-induced colonic mucosal epithelial cell dysfunction. In colonic mucosal tissues from IBS patients, we detected upregulated miR-34a-5p and suppressed glucose metabolism enzyme expressions. Under H <subscript>2</subscript> O <subscript>2</subscript> treatment which mimics in vitro oxidative stress, miR-34a-5p was induced and glucose metabolism was inhibited in the colon mucosal epithelial cell line, NCM460. Meanwhile, ATL-I treatment effectively overcame the oxidative stress-induced miR-34a- 5p expression and glucose metabolism in NCM460 cells.<br />Result: By bioinformatics analysis, Western blot and luciferase assay, we illustrated that miR-34a-5p directly targeted the 3'UTR region of glucose metabolism key enzyme, lactate dehydrogenase-A (LDHA) in colonic mucosal epithelial cells. Rescue experiments validated that miR-34a-5p inhibited glucose metabolism by targeting LDHA. Finally, we demonstrated that ATL-I treatment reversed the miR-34a-5p-inhibited glucose metabolism and -exacerbated colonic mucosal epithelial cell dysfunction under oxidative stress by modulating the miR-34a-5p-LDHA pathway.<br />Conclusion: Summarily, our study reports the roles and mechanisms of ATL-I in the oxidative stress-induced colonic mucosal epithelial cell dysfunction during IBS through regulating the miR-34a-5p-LDHA-glucose metabolism axis.<br /> (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)

Details

Language :
English
ISSN :
1875-5666
Volume :
23
Issue :
8
Database :
MEDLINE
Journal :
Current molecular medicine
Publication Type :
Academic Journal
Accession number :
35959614
Full Text :
https://doi.org/10.2174/1566524022666220811161111