Back to Search
Start Over
Characterizing the respiratory-induced mechanical stimulation at the maxillary sinus floor following sinus augmentation by computational fluid dynamics.
- Source :
-
Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2022 Jul 26; Vol. 10, pp. 885130. Date of Electronic Publication: 2022 Jul 26 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- Background: The relationship between maxillary sinus pneumatization and respiratory-induced fluid mechanics remains unclear. The purpose of this study was to simulate and measure the respiratory-induced mechanical stimulation at the sinus floor under different respiratory conditions and to investigate its potential effect on the elevated sinus following sinus-lifting procedures. Methods: The nasal airway together with the bilateral maxillary sinuses of the selected patient was segmented and digitally modeled from a computed tomographic image. The sinus floors of the models were elevated by simulated sinus augmentations using computer-aided design. The numerical simulations of sinus fluid motion under different respiratory conditions were performed using a computational fluid dynamics (CFD) algorithm. Sinus wall shear stress and static pressure on the pre-surgical and altered sinus floors were examined and quantitatively compared. Results: Streamlines with minimum airflow velocity were visualized in the sinus. The sinus floor pressure and the wall shear stress increased with the elevated inlet flow rate, but the magnitude of these mechanical stimulations remained at a negligible level. The surgical technique and elevated height had no significant influence on the wall pressure and the fluid mechanics. Conclusion: This study shows that respiratory-induced mechanical stimulation in the sinus floor is negligible before and after sinus augmentation.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2022 Li, Wang, Wang and Wang.)
Details
- Language :
- English
- ISSN :
- 2296-4185
- Volume :
- 10
- Database :
- MEDLINE
- Journal :
- Frontiers in bioengineering and biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 35957638
- Full Text :
- https://doi.org/10.3389/fbioe.2022.885130