Back to Search Start Over

Structural connectivity mediates the relationship between blood oxygenation and cognitive function in sickle cell anemia.

Authors :
Clayden JD
Stotesbury H
Kawadler JM
Slee A
Kӧlbel M
Saunders DE
Hood AM
Wilkey O
Layton M
Inusa B
Pelidis M
Chakravorty S
Rees DC
Howard J
Awogbade M
Liossi C
Kirkham FJ
Clark CA
Source :
Blood advances [Blood Adv] 2023 Jun 13; Vol. 7 (11), pp. 2297-2308.
Publication Year :
2023

Abstract

In sickle cell disease, the relative importance of reduced hemoglobin (Hb) and peripheral oxygen saturation on brain structure remains uncertain. We applied graph-theoretical analysis to diffusion magnetic resonance imaging data to investigate the effect of structural brain connectivity on cognitive function, alongside the presence or absence, number, and volume of silent cerebral infarction. In patients, we investigated the relationships between network properties, blood oxygenation, and cognition (working memory and processing speed indices). Based on streamline counts and fractional anisotropy, we identified a subnetwork with weakened connectivity in 92 patients with sickle cell disease (91 homozygous for HbS [HbSS], 1 heterozygote with HbSβ0 thalassemia; 49 males; aged 8.0 to 38.8 y), compared with 54 control subjects (22 males; aged 6.7 to 30.6 y). Multiple regression analyses showed a significant effect of Hb on full-network edge density (P < .05) and of peripheral oxygen saturation on streamline-weighted subnetwork efficiency (P < .01). There were effects of fractional anisotropy-weighted full-network and subnetwork efficiency on working memory index (both P < .05), and of streamline-weighted subnetwork efficiency on processing speed index (P = .05). However, there were no effects of presence, number or volume of silent cerebral infarcts. Streamline-weighted efficiency was progressively lower with lower oxygen saturation, with a downstream effect on the processing speed index. In path analysis, indirect relationships between blood oxygenation and cognition, mediated by network properties, were better supported than direct alternatives, with an indirect relationship between low oxygen saturation and processing speed index in patients, mediated by structural connectivity efficiency in a subnetwork of the brain differing from control subjects. Our findings are consistent with the notion that cognitive impairment is primarily mediated by hypoxic-ischemic effects on normal-appearing white matter and highlight the utility of network-based methods in providing biomarkers of cognitive dysfunction in patients with sickle cell disease.<br /> (© 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)

Details

Language :
English
ISSN :
2473-9537
Volume :
7
Issue :
11
Database :
MEDLINE
Journal :
Blood advances
Publication Type :
Academic Journal
Accession number :
35947137
Full Text :
https://doi.org/10.1182/bloodadvances.2021006751