Back to Search Start Over

Discovery of nonautonomous modulators of activated Ras.

Authors :
Corchado-Sonera M
Rambani K
Navarro K
Kladney R
Dowdle J
Leone G
Chamberlin HM
Source :
G3 (Bethesda, Md.) [G3 (Bethesda)] 2022 Sep 30; Vol. 12 (10).
Publication Year :
2022

Abstract

Communication between mesodermal cells and epithelial cells is fundamental to normal animal development and is frequently disrupted in cancer. However, the genes and processes that mediate this communication are incompletely understood. To identify genes that mediate this communication and alter the proliferation of cells with an oncogenic Ras genotype, we carried out a tissue-specific genome-wide RNAi screen in Caenorhabditis elegans animals bearing a let-60(n1046gf) (RasG13E) allele. The screen identifies 24 genes that, when knocked down in adjacent mesodermal tissue, suppress the increased vulval epithelial cell proliferation defect associated with let-60(n1046gf). Importantly, gene knockdown reverts the mutant animals to a wild-type phenotype. Using chimeric animals, we genetically confirm that 2 of the genes function nonautonomously to revert the let-60(n1046gf) phenotype. The effect is genotype restricted, as knockdown does not alter development in a wild type (let-60(+)) or activated EGF receptor (let-23(sa62gf)) background. Although many of the genes identified encode proteins involved in essential cellular processes, including chromatin formation, ribosome function, and mitochondrial ATP metabolism, knockdown does not alter the normal development or function of targeted mesodermal tissues, indicating that the phenotype derives from specific functions performed by these cells. We show that the genes act in a manner distinct from 2 signal ligand classes (EGF and Wnt) known to influence the development of vulval epithelial cells. Altogether, the results identify genes with a novel function in mesodermal cells required for communicating with and promoting the proliferation of adjacent epithelial cells with an activated Ras genotype.<br /> (© The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.)

Details

Language :
English
ISSN :
2160-1836
Volume :
12
Issue :
10
Database :
MEDLINE
Journal :
G3 (Bethesda, Md.)
Publication Type :
Academic Journal
Accession number :
35929788
Full Text :
https://doi.org/10.1093/g3journal/jkac200