Back to Search Start Over

Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae .

Authors :
Guo H
Wang H
Chen T
Guo L
Blank LM
Ebert BE
Huo YX
Source :
ACS synthetic biology [ACS Synth Biol] 2022 Aug 19; Vol. 11 (8), pp. 2685-2696. Date of Electronic Publication: 2022 Aug 03.
Publication Year :
2022

Abstract

Triterpenoids are a subgroup of terpenoids and have wide applications in the food, cosmetics, and pharmaceutical industries. The heterologous production of various triterpenoids in Saccharomyces cerevisiae , as well as other microbes, has been successfully implemented as these production hosts not only produce the precursor of triterpenoids 2,3-oxidosqualene by the mevalonate pathway but also allow simple expression of plant membrane-anchored enzymes. Nevertheless, 2,3-oxidosqualene is natively converted to lanosterol catalyzed by the endogenous lanosterol synthase (Erg7p), causing low production of recombinant triterpenoids. While simple deletion of ERG7 was not effective, in this study, the critical amino acid residues of Erg7p were engineered to lower this critical enzyme activity. The engineered S. cerevisiae indeed accumulated 2,3-oxidosqualene up to 180 mg/L. Engineering triterpenoid synthesis into the ERG7 -modified strain resulted in 7.3- and 3-fold increases in the titers of dammarane-type and lupane-type triterpenoids, respectively. This study presents an efficient inducer-free strategy for lowering Erg7p activity, thereby providing 2,3-oxidosqualene for the enhanced production of various triterpenoids.

Details

Language :
English
ISSN :
2161-5063
Volume :
11
Issue :
8
Database :
MEDLINE
Journal :
ACS synthetic biology
Publication Type :
Academic Journal
Accession number :
35921601
Full Text :
https://doi.org/10.1021/acssynbio.2c00098