Back to Search Start Over

Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA.

Authors :
Jin S
Bueno C
Lu W
Wang Q
Chen M
Chen X
Wolynes PG
Gao Y
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2022 Aug 09; Vol. 119 (32), pp. e2202239119. Date of Electronic Publication: 2022 Aug 01.
Publication Year :
2022

Abstract

Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5'-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5'-triphosphate (ATP) at the subunit interface stabilizes the subunit-subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5'-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein-protein and protein-DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein-ssDNA force field and elucidate the molecular basis of replicative helicase translocation.

Details

Language :
English
ISSN :
1091-6490
Volume :
119
Issue :
32
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
35914145
Full Text :
https://doi.org/10.1073/pnas.2202239119