Back to Search
Start Over
Attention-augmented U-Net (AA-U-Net) for semantic segmentation.
- Source :
-
Signal, image and video processing [Signal Image Video Process] 2023; Vol. 17 (4), pp. 981-989. Date of Electronic Publication: 2022 Jul 25. - Publication Year :
- 2023
-
Abstract
- Deep learning-based image segmentation models rely strongly on capturing sufficient spatial context without requiring complex models that are hard to train with limited labeled data. For COVID-19 infection segmentation on CT images, training data are currently scarce. Attention models, in particular the most recent self-attention methods, have shown to help gather contextual information within deep networks and benefit semantic segmentation tasks. The recent attention-augmented convolution model aims to capture long range interactions by concatenating self-attention and convolution feature maps. This work proposes a novel attention-augmented convolution U-Net (AA-U-Net) that enables a more accurate spatial aggregation of contextual information by integrating attention-augmented convolution in the bottleneck of an encoder-decoder segmentation architecture. A deep segmentation network (U-Net) with this attention mechanism significantly improves the performance of semantic segmentation tasks on challenging COVID-19 lesion segmentation. The validation experiments show that the performance gain of the attention-augmented U-Net comes from their ability to capture dynamic and precise (wider) attention context. The AA-U-Net achieves Dice scores of 72.3% and 61.4% for ground-glass opacity and consolidation lesions for COVID-19 segmentation and improves the accuracy by 4.2% points against a baseline U-Net and 3.09% points compared to a baseline U-Net with matched parameters.<br />Supplementary Information: The online version contains supplementary material available at 10.1007/s11760-022-02302-3.<br /> (© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.)
Details
- Language :
- English
- ISSN :
- 1863-1703
- Volume :
- 17
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Signal, image and video processing
- Publication Type :
- Academic Journal
- Accession number :
- 35910403
- Full Text :
- https://doi.org/10.1007/s11760-022-02302-3