Cite
Machine Learning and Clinical-Radiological Characteristics for the Classification of Prostate Cancer in PI-RADS 3 Lesions.
MLA
Gravina, Michela, et al. “Machine Learning and Clinical-Radiological Characteristics for the Classification of Prostate Cancer in PI-RADS 3 Lesions.” Diagnostics (Basel, Switzerland), vol. 12, no. 7, June 2022. EBSCOhost, https://doi.org/10.3390/diagnostics12071565.
APA
Gravina, M., Spirito, L., Celentano, G., Capece, M., Creta, M., Califano, G., Collà Ruvolo, C., Morra, S., Imbriaco, M., Di Bello, F., Sciuto, A., Cuocolo, R., Napolitano, L., La Rocca, R., Mirone, V., Sansone, C., & Longo, N. (2022). Machine Learning and Clinical-Radiological Characteristics for the Classification of Prostate Cancer in PI-RADS 3 Lesions. Diagnostics (Basel, Switzerland), 12(7). https://doi.org/10.3390/diagnostics12071565
Chicago
Gravina, Michela, Lorenzo Spirito, Giuseppe Celentano, Marco Capece, Massimiliano Creta, Gianluigi Califano, Claudia Collà Ruvolo, et al. 2022. “Machine Learning and Clinical-Radiological Characteristics for the Classification of Prostate Cancer in PI-RADS 3 Lesions.” Diagnostics (Basel, Switzerland) 12 (7). doi:10.3390/diagnostics12071565.