Back to Search
Start Over
Transient Motion Classification Through Turbid Volumes via Parallelized Single-Photon Detection and Deep Contrastive Embedding.
- Source :
-
Frontiers in neuroscience [Front Neurosci] 2022 Jul 08; Vol. 16, pp. 908770. Date of Electronic Publication: 2022 Jul 08 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- Fast noninvasive probing of spatially varying decorrelating events, such as cerebral blood flow beneath the human skull, is an essential task in various scientific and clinical settings. One of the primary optical techniques used is diffuse correlation spectroscopy (DCS), whose classical implementation uses a single or few single-photon detectors, resulting in poor spatial localization accuracy and relatively low temporal resolution. Here, we propose a technique termed C lassifying R apid decorrelation E vents via P arallelized single photon d E tection (CREPE) , a new form of DCS that can probe and classify different decorrelating movements hidden underneath turbid volume with high sensitivity using parallelized speckle detection from a 32 × 32 pixel SPAD array. We evaluate our setup by classifying different spatiotemporal-decorrelating patterns hidden beneath a 5 mm tissue-like phantom made with rapidly decorrelating dynamic scattering media. Twelve multi-mode fibers are used to collect scattered light from different positions on the surface of the tissue phantom. To validate our setup, we generate perturbed decorrelation patterns by both a digital micromirror device (DMD) modulated at multi-kilo-hertz rates, as well as a vessel phantom containing flowing fluid. Along with a deep contrastive learning algorithm that outperforms classic unsupervised learning methods, we demonstrate our approach can accurately detect and classify different transient decorrelation events (happening in 0.1-0.4 s) underneath turbid scattering media, without any data labeling. This has the potential to be applied to non-invasively monitor deep tissue motion patterns, for example identifying normal or abnormal cerebral blood flow events, at multi-Hertz rates within a compact and static detection probe.<br />Competing Interests: SX and RH have submitted a patent application related to this work, assigned to Duke University. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2022 Xu, Liu, Yang, Jönsson, Qian, McKee, Kim, Konda, Zhou, Kreiß, Wang, Berrocal, Huettel and Horstmeyer.)
Details
- Language :
- English
- ISSN :
- 1662-4548
- Volume :
- 16
- Database :
- MEDLINE
- Journal :
- Frontiers in neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 35873809
- Full Text :
- https://doi.org/10.3389/fnins.2022.908770