Back to Search
Start Over
Overexpression of mcr-1 disrupts cell envelope synthesis and causes the dysregulation of carbon metabolism, redox balance and nucleic acids.
- Source :
-
International journal of antimicrobial agents [Int J Antimicrob Agents] 2022 Sep; Vol. 60 (3), pp. 106643. Date of Electronic Publication: 2022 Jul 22. - Publication Year :
- 2022
-
Abstract
- Introduction: Rapid dissemination of plasmid-borne polymyxin resistance mcr-1 genes threatens the efficacy of polymyxins. Acquisition of mcr-1 imposes a fitness cost on bacteria; identifying the molecular mechanisms underpinning this fitness cost will help in the development of adjunctive antimicrobial therapies that target polymyxin-resistant Gram-negative pathogens.<br />Methods: Phenotypic assays and transcriptomics were acquired to investigate the impact of mcr-1 expression on membrane characteristics and transcriptomic responses in Escherichia coli TOP10 carrying the empty vector pBAD (TOP10+pBAD) and harbouring pBAD-mcr-1 (TOP10+pBAD-mcr-1).<br />Results: The overexpression of mcr-1 increased outer membrane permeability and caused membrane depolarisation, reflective of the transcriptomic results that showed downregulation of multiple genes involved in lipopolysaccharide core and O-antigen biosynthesis. Overexpression of mcr-1 also caused considerable gene expression changes in pathways involving carbohydrate metabolism (phosphotransferase system, pentose phosphate pathway, and pantothenate and coenzyme A biosynthesis), ABC transporters and intracellular responses to stress, especially those associated with oxidative and nucleic acid damage. Expression of mcr-1 also triggered the production of reactive oxygen species.<br />Conclusion: These findings indicate that overexpression of mcr-1 results in persistent transcriptomic changes that primarily involve disruption to cell envelope synthesis via the reduction of LPS modifications, as well as dysregulation of carbon metabolism, redox balance and nucleic acids. These consequences of expression dysregulation may act as the main factors that impose a fitness cost with mcr-1 expression.<br /> (Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Subjects :
- Anti-Bacterial Agents pharmacology
Carbon
Colistin metabolism
Colistin pharmacology
Drug Resistance, Bacterial genetics
Escherichia coli genetics
Escherichia coli metabolism
Microbial Sensitivity Tests
Oxidation-Reduction
Plasmids
Polymyxins
Escherichia coli Proteins genetics
Escherichia coli Proteins metabolism
Nucleic Acids metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1872-7913
- Volume :
- 60
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- International journal of antimicrobial agents
- Publication Type :
- Academic Journal
- Accession number :
- 35872294
- Full Text :
- https://doi.org/10.1016/j.ijantimicag.2022.106643