Back to Search
Start Over
Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting.
- Source :
-
Nature communications [Nat Commun] 2022 Jul 22; Vol. 13 (1), pp. 4231. Date of Electronic Publication: 2022 Jul 22. - Publication Year :
- 2022
-
Abstract
- When reading consecutive mRNA codons, ribosomes move by exactly one triplet at a time to synthesize a correct protein. Some mRNA tracks, called slippery sequences, are prone to ribosomal frameshifting, because the same tRNA can read both 0- and -1-frame codon. Using smFRET we show that during EF-G-catalyzed translocation on slippery sequences a fraction of ribosomes spontaneously switches from rapid, accurate translation to a slow, frameshifting-prone translocation mode where the movements of peptidyl- and deacylated tRNA become uncoupled. While deacylated tRNA translocates rapidly, pept-tRNA continues to fluctuate between chimeric and posttranslocation states, which slows down the re-locking of the small ribosomal subunit head domain. After rapid release of deacylated tRNA, pept-tRNA gains unconstrained access to the -1-frame triplet, resulting in slippage followed by recruitment of the -1-frame aa-tRNA into the A site. Our data show how altered choreography of tRNA and ribosome movements reduces the translation fidelity of ribosomes translocating in a slow mode.<br /> (© 2022. The Author(s).)
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 13
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 35869111
- Full Text :
- https://doi.org/10.1038/s41467-022-31852-w