Back to Search Start Over

Balances among reproduction, antioxidant responses and lipid metabolism underlying the multi-generational effects of N-butylpyridinium bromide on Caenorhabditis elegans.

Authors :
Zhang J
Shi Y
Yu Z
Source :
The Science of the total environment [Sci Total Environ] 2022 Nov 10; Vol. 846, pp. 157468. Date of Electronic Publication: 2022 Jul 20.
Publication Year :
2022

Abstract

Ionic liquids (ILs) are difficult to degrade and even accumulate in the environment. Accordingly, their long-term toxicities are particularly important to demonstrate their accurate risk assessment. However, their long-term toxicities over generations and the toxicity mechanisms lacked thorough investigation. Presently, N-butylpyridinium bromide ([bpyr]Br), a representative IL, was chosen to measure its long-term effects on Caenorhabditis elegans for seven consecutive generations at 0.0225 and 22.5 mg/L. Toxicity mechanisms were explored in F1, F3, F5 and F7 by combining both antioxidant responses and lipid metabolism. Results showed that [bpyr]Br at low concentration provoked oscillatory effects on the reproduction over 7 generations, with inhibition in F1 and F7 and stimulation in F2, F4 and F5. At high concentration, [bpyr]Br showed similar multi-generational oscillation with greater inhibition in F1 and greater stimulation in F5. The effects of [bpyr]Br on the antioxidant responses to oxidative stress also showed oscillation over generations. The integrated biomarker response (IBR) values showed that [bpyr]Br at low concentration did not provoke significant influences on the overall antioxidant homeostasis in F1 and F3, but significantly stimulated it in F5 and F7. Meanwhile, [bpyr]Br at high concentration stimulated the antioxidant homeostasis in F1 and F7 with non-significant influences in F3 and F5. The IBR values regarding indicators in lipid metabolism showed that [bpyr]Br significantly and commonly stimulated the overall metabolism without concentration-dependent differences. Further analysis implied that [bpyr]Br provoked different mechanisms underlying the responses at low and high concentrations.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
846
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
35868368
Full Text :
https://doi.org/10.1016/j.scitotenv.2022.157468