Back to Search Start Over

pH-Responsive Hydrogel Beads Based on Alginate, κ-Carrageenan and Poloxamer for Enhanced Curcumin, Natural Bioactive Compound, Encapsulation and Controlled Release Efficiency.

Authors :
Postolović KS
Antonijević MD
Ljujić B
Miletić Kovačević M
Gazdić Janković M
Stanić ZD
Source :
Molecules (Basel, Switzerland) [Molecules] 2022 Jun 23; Vol. 27 (13). Date of Electronic Publication: 2022 Jun 23.
Publication Year :
2022

Abstract

Polyphenolic compounds are used for treating various diseases due to their antioxidant and anticancer properties. However, utilization of hydrophobic compounds is limited due to their low bioavailability. In order to achieve a greater application of hydrophobic bioactive compounds, hydrogel beads based on biopolymers can be used as carriers for their enhanced incorporation and controlled delivery. In this study, beads based on the biopolymers-κ-carrageenan, sodium alginate and poloxamer 407 were prepared for encapsulation of curcumin. The prepared beads were characterized using IR, SEM, TGA and DSC. The curcumin encapsulation efficiency in the developed beads was 95.74 ± 2.24%. The release kinetics of the curcumin was monitored in systems that simulate the oral delivery (pH 1.2 and 7.4) of curcumin. The drug release profiles of the prepared beads with curcumin indicated that the curcumin release was significantly increased compared with the dissolution of curcumin itself. The cumulative release of curcumin from the beads was achieved within 24 h, with a final release rate of 12.07% (gastric fluid) as well as 81.93% (intestinal fluid). Both the in vitro and in vivo studies showed that new hydrogel beads based on carbohydrates and poloxamer improved curcumin's bioavailability, and they can be used as powerful carriers for the oral delivery of different hydrophobic nutraceuticals.

Details

Language :
English
ISSN :
1420-3049
Volume :
27
Issue :
13
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
35807288
Full Text :
https://doi.org/10.3390/molecules27134045