Back to Search Start Over

Counting generations in birth and death processes with competing Erlang and exponential waiting times.

Authors :
Belluccini G
López-García M
Lythe G
Molina-París C
Source :
Scientific reports [Sci Rep] 2022 Jul 04; Vol. 12 (1), pp. 11289. Date of Electronic Publication: 2022 Jul 04.
Publication Year :
2022

Abstract

Lymphocyte populations, stimulated in vitro or in vivo, grow as cells divide. Stochastic models are appropriate because some cells undergo multiple rounds of division, some die, and others of the same type in the same conditions do not divide at all. If individual cells behave independently, then each cell can be imagined as sampling from a probability density of times to division and death. The exponential density is the most mathematically and computationally convenient choice. It has the advantage of satisfying the memoryless property, consistent with a Markov process, but it overestimates the probability of short division times. With the aim of preserving the advantages of a Markovian framework while improving the representation of experimentally-observed division times, we consider a multi-stage model of cellular division and death. We use Erlang-distributed (or, more generally, phase-type distributed) times to division, and exponentially distributed times to death. We classify cells into generations, using the rule that the daughters of cells in generation n are in generation [Formula: see text]. In some circumstances, our representation is equivalent to established models of lymphocyte dynamics. We find the growth rate of the cell population by calculating the proportions of cells by stage and generation. The exponent describing the late-time cell population growth, and the criterion for extinction of the population, differs from what would be expected if N steps with rate [Formula: see text] were equivalent to a single step of rate [Formula: see text]. We link with a published experimental dataset, where cell counts were reported after T cells were transferred to lymphopenic mice, using Approximate Bayesian Computation. In the comparison, the death rate is assumed to be proportional to the generation and the Erlang time to division for generation 0 is allowed to differ from that of subsequent generations. The multi-stage representation is preferred to a simple exponential in posterior distributions, and the mean time to first division is estimated to be longer than the mean time to subsequent divisions.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
35789162
Full Text :
https://doi.org/10.1038/s41598-022-14202-0