Back to Search Start Over

Elasticity of podosome actin networks produces nanonewton protrusive forces.

Authors :
Jasnin M
Hervy J
Balor S
Bouissou A
Proag A
Voituriez R
Schneider J
Mangeat T
Maridonneau-Parini I
Baumeister W
Dmitrieff S
Poincloux R
Source :
Nature communications [Nat Commun] 2022 Jul 04; Vol. 13 (1), pp. 3842. Date of Electronic Publication: 2022 Jul 04.
Publication Year :
2022

Abstract

Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
35789161
Full Text :
https://doi.org/10.1038/s41467-022-30652-6