Back to Search Start Over

Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis-Menten model.

Authors :
Sharif S
Hasegawa C
Duffull SB
Source :
Journal of pharmacokinetics and pharmacodynamics [J Pharmacokinet Pharmacodyn] 2022 Aug; Vol. 49 (4), pp. 445-453. Date of Electronic Publication: 2022 Jul 05.
Publication Year :
2022

Abstract

Nonlinear ordinary differential equations (ODEs) are common in pharmacokinetic-pharmacodynamic systems. Although their exact solutions cannot generally be determined via algebraic methods, their rapid and accurate solutions are desirable. Thus, numerical methods have a critical role. Inductive Linearization was proposed as a method to solve systems of nonlinear ODEs. It is an iterative approach that converts a nonlinear ODE into a linear time-varying (LTV) ODE, for which a range of standard integration techniques can then be used to solve (e.g., eigenvalue decomposition [EVD]). This study explores the properties of Inductive Linearization when coupled with EVD for integration of the LTV ODE and illustrates how the efficiency of the method can be improved. Improvements were based on three approaches, (1) incorporation of a convergence criterion for the iterative linearization process (for simulation and estimation), (2) creating more efficient step sizes for EVD (for simulation and estimation), and (3) updating the initial conditions of the Inductive Linearization (for estimation). The performance of these improvements were evaluated using single subject stochastic simulation-estimation with an application to a simple pharmacokinetic model with Michaelis-Menten elimination. The reference comparison was a standard non-stiff Runge-Kutta method with variable step size (ode45, MATLAB). Each of the approaches improved the speed of the Inductive Linearization technique without diminishing accuracy which, in this simple case, was faster than ode45 with comparable accuracy in the parameter estimates. The methods described here can easily be implemented in standard software programme such as R or MATLAB. Further work is needed to explore this technique for estimation in a population approach setting.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
1573-8744
Volume :
49
Issue :
4
Database :
MEDLINE
Journal :
Journal of pharmacokinetics and pharmacodynamics
Publication Type :
Academic Journal
Accession number :
35788853
Full Text :
https://doi.org/10.1007/s10928-022-09813-z