Back to Search Start Over

Intranasal immunization with avian paramyxovirus type 3 expressing SARS-CoV-2 spike protein protects hamsters against SARS-CoV-2.

Authors :
Park HS
Matsuoka Y
Luongo C
Yang L
Santos C
Liu X
Ahlers LRH
Moore IN
Afroz S
Johnson RF
Lafont BAP
Dorward DW
Fischer ER
Martens C
Samal SK
Munir S
Buchholz UJ
Le Nouën C
Source :
NPJ vaccines [NPJ Vaccines] 2022 Jun 28; Vol. 7 (1), pp. 72. Date of Electronic Publication: 2022 Jun 28.
Publication Year :
2022

Abstract

Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.<br /> (© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)

Details

Language :
English
ISSN :
2059-0105
Volume :
7
Issue :
1
Database :
MEDLINE
Journal :
NPJ vaccines
Publication Type :
Academic Journal
Accession number :
35764659
Full Text :
https://doi.org/10.1038/s41541-022-00493-x